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ABSTRACT

We have generated picosecond opfic1 pulses with very pure spectral characteristics using
semiconductor lasers with monolithic cavities. Fx repetition rates less than 10 GHz, gain-switching of
DFB lasers with quantum well loss-gratings is usul. Monolithic colliding pulse mode-locked
semiconductor lasers are used to generate short pulses with repetition rate up to 350GHz.

1. INTRODUCTION

The generation of ultra-short optical pulses and its synchronization to electronic oscillators are of great
interests to many optoelectronic applications such as high bit rate time-division multiplexed communication
systems, ultra-long distance soliton fiber transmission experiments', picosecond optical logic gates2, opto-
electronic sampling systems3, and broadband sub-millimeter-wave generation4. Theoretically, it is possible
to generate very short optical0pulses (-.- 50 femtoseconds) in semiconductor gain medium because of its

broad gain spectrum (-.- 1000A). The minimum pulse width that can be generated for a prescribed spectral
bandwidth is limited by the Fourier theorem. A transform-limited optical pulse would have very small
frequency chirp and very little amplitude substructures and can propagate a long distance in dispersive
mediums such as fibers.

Gain switching and mode-locking are two commonly used methods to generate short optical pulses
from semiconductor lasers. Gain switching of a laser diode is easily achieved by capitalizing the first period
of the relaxation oscillation which is generated by switching on a diode laser biased just below threshold5'6
with injected electrical or optical excitations. The advantage of using the gain switched pulses is the
flexibility to change the repetition rate without modifying the cavity length. However, when the laser is
suddenly switched from below to above threshold, significant fluctuations in both the carrier density and the
time delay between the excitation and optical output are produced. These produce significant frequency
chirp7 and timingjitter associated with the gain-switched optical pulses8.

To generate short optical pulses with very pure spectral properties and low timing jitter, mode-locking
techniques are generally utilized. The semiconductor media provide both the gain and absorption
mechanism which are needed for mode-locking. Earlier works have utilized semiconductors in
implementing active (forced) mode-locked, passive mode-locked, and hybrid mode-locked lasers using
external resonant cavities and bulk optical elements9. Because the pulse shaping mechanisms are
determined by the difference in transient saturation and recovery time constants between the gain and
absorber in a mode-locked laser'°, it is possible to generate short optical pulses with a repetition rate
beyond the relaxation oscillation frequency of the semiconductor laser. In this paper, we demonstrated the
short pulse generation with nearly transform-limited spectral quality by either gain-switching of DFB lasers
with integrated loss-gratings or using colliding pulse mode-locked (CPM) quantum well lasers with
integrated cavities.
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2. GAIN-SWiTChEDDFB LASERS WITh QUANTUM WELL LOSS GRATINGS

The generation of single mode short optical pulses by semiconductor distributel feedback (DFB) laser
with near transform-llmfted bandwidth produ at infrared wavelength is very important for many
applications in fiber communication systems. Commonly-used index-aupled semicxrnductor distributed
feedback lasers have problems to yield single mode radiation from the uncertainty of gratings-to-facet
phases"2. Recently, lots of interests have been generated by the gain-axipled DFB lasers which promise
high single mode yield, immune to residual facet reflection, and resistance to external reflecüo&"4.
Short optical pulses have also been generated by gain-aupled DFB lasers with low wavelength chirping's.
Previously, we have demonstrated excellent lasing characteristics from gain-coupled DFB lasers by
introducing quantum well (QW) loss-gratings grown by chemical beam epitaxy (CI3E)16. Good and
reproducible control ofcoupling coefficient, and large side-mode suppression ratio have been obtained.

Figure 1 shows the schematic cross-section of the DFB strudure with multiple quantum wells gratings
for optical feedback Two 4 nm-thick In Ga As wells and 9.3 nm-thick InP barriers were first grown
on InP substrate. First order gratings were delineated by holographic techniques and wet etching. After the
regrowth of 65 nm-thick n-InP spacer layer, a standard strained-layer six-QW separate confinement
heterostructure (SCH) was grown by CBE. The active QWs had 5nm-thick Ino6 Gao4As wells and 18.6
nm-thick quaternary barriers with 1.25 im bandgap energy, QL25• The In composition in the QW grating
was slighter higher than that of the active QW's for loss-coupled optical feedback. The thickness of Q1.25

waveguide layers were 52.2 nm each. BUried heterostructure lasers were formed by employing regrowth of
Fe-doped hiP confinement layers using organometallic vapor phase epitaxy (OMVPE). Detailed growth
and laser characteristics were reported elsewhere'6. The 500 pm-wide laser was then mounted on a high
frequency fixture for evaluations.

The schematic diagram of the test setup is shown in Fig. 2. A syncbro-scan streak camera was used to
record the time domain optical pulses, while the time-average spectra were monitored by an optical
spectrum analyzer. Without microwave modulation, this gain-coupled DFB laser is lasing at single mode
with a side-mode suppression ratio greater than 40 dB. Because tbe amount of absorption in the QW
gratings can be controlled by the indium composition of the QW's as well as the thickness of the hiP spacer
layer and QW's, no self-pulsation were observed over the whole dc bias regime. This had been verified by
sending the optical signal into a high speed detector mounted at the input of a highly sensitive microwave
spectrum analyzer.

Figure 3(a) shows the time trace recorded by streak camera. The laser was biased at 60 mA (4xIth) and
was driven by a microwave source at 4 GHz. It shows a 100 % optical modulation depth with a FWHM
pulse width of 23 pa. The average output power is 6.7 mW and the peak power of the optical pulse is —72
mW. The corresponding time-average spectrum is recorded in Fig. 3 (b). The optical spectrum shows a
FWHM bandwidth of 0.14 nm which is corresponding to a time-bandwidth product of 0.405. This is very
close to the transform-limited value of 0.31 for a hyperbolic secant pulse shape or 0.44 for a Gaussian
shape.

3. MONOLITHIC CPM QUANTUM WELL LASERS

A colliding pulse mode-locked (CPM) scheme'7 is incorporated into tI'e muliiple quantum well laser to
produce subpicosecond transform-limited pulses. Figure 4shows the schematic diagram of this monolithic
CPM quantum well laser grown by OMVPE.18 The top contact stripe of the multiple quantum well laser is
divided into five sections: a saturable absorber in the center, two modulator sections near the cleaved
Fabry-Perot mirrors, and active waveguide sections linking the modulators and the absorber. Integrated
microstrip transmission lines are used on the top of a semi-insulating iron-doped InP epitaxial regrowth
layer to distribute the millimeter-wave synchronization signal to the two modulators in phase. The saturable
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absorber is reverse-biased, while the restof the lasersections are forward-biased to provide gain.

We use the non-collinear second harmonic generation (SHG) auto-correlation techniqueto characterize
these sub-picosecond pulses. Figure 5 shows the measurement setup for this mode-locking experiment. The
measured SHG autocorrelation curve in Figure 6 fits very well by a hypetholic sent square pu]se shape
with a pulse width as short as 950 femtosecxxxls. Near 100% optical modulation is obtained with very low
RF powerof l5dBm at 40 GHz for a 2.1 mm-long laser. From the 2.6mm (FHWM) spectral width of the
mode-locked spectrum, the time-bandwidth product is 0.32, which is very closed to the theoretical limit of
0314 for hyperbolic sent pu]se shape. Because the waveguide is composed of the active medium, the
mode-locking operation can be obtained over broad locking frequencies centered at ball of the cavity round
thp time, as shown in Figure 7. Without the synchronizing sours, free-running transform-limited pulses
are generated by passive coffiding pulse mode-lockinig'9. The repetition rate is only determined by the
25O-tm-long cavity length, and pulse width of 610 fs is Obtained at a rate high as 350 GHz, as shown in
Figure 8.

4. SUMMARY

In summary, we have generated short optical pulses with nearly transform-limited time-bandwidth
products by either gain switching or mode-locking of semiconductor lasers with monolithic cavities. These
compact integrated high speed light sours are very useful for many applications in high bit-rate
optoelectromc communimtion and computation systems.
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Fig. 1 Schematic diagram of t1 cross-section of a
semiconductor gain-coupled distributed feedbk
laser with multiple quantum wells as the loss-
gratings.

Fig. 3 (a) Measured streak camera trace of a gain-
coupled DFB laser with MQW loss gratings. The
laser is driven by a 4 GHz microwave oscillator,
and the pulse width is 23 ps.

Fig. 2 The schematic diagram of tt setups to measure
the gain-switched lasers.

(b) The measured time-averaged spectrum
corresponding to Fig. 3 (a). The FWHM
bandwidth of 0.14 nm corresponds to a time-
bandwidth product of 0.405.
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Fig. 4 Schematic diagram of a integrated colliding-pulse
mode-locked quantum well laser on a single chip.

Fig. 5 Schematic diagram of the experimental setup to
measure the pulse characieristics of monolithic
CPM semiconductor lasers.
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Fig. 6 Measured and modeled second harmonic
autocorrelation trace of a CPM MQW laser at 40
GHz with a FWHM pulse width of 0.95 ps.

Fig. 7 Broad frequency tuning range of an active mode-
locked CPM laser.
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Fig. 8 Measured second harmonic generation
autocorrelation tra of a passive CPM laser at
350 GHz. The pulse width is 610 fs and the cavity
length of the laser is 250urn.
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